
Supplemental Material
Here we derive a more detailed derivation of the proofs, which may helpful to teaching this derivation or
giving as an exercise.

Showing a full proof of the strict inequality

P (Xi > Xj |Yi = 1, Yj = 0) =
P (Xi > Xj |Yi = 1, Yj = 0, Xi = 0)P (Xi = 0|Yi = 1, Yj = 0)

+ P (Xi > Xj |Yi = 1, Yj = 0, Xi = 1)P (Xi = 1|Yi = 1, Yj = 0)
= P (Xi > Xj |Yi = 1, Yj = 0, Xi = 1)P (Xi = 1|Yi = 1, Yj = 0) (1)

as P (Xi > Xj |Yi = 1, Yj = 0, Xi = 0) = 0 because Xi and Xj are in {0, 1}. We see that P (Xi = 1|Yi =
1, Yj = 0) in equation (1) is the sensitivity by independence:

P (Xi = 1|Yi = 1, Yj = 0) = P (Xi = 1|Yi = 1)

= TP

TP + FN

= sensitivity

and that P (Xi > Xj |Yi = 1, Yj = 0, Xi = 1) in equation (1) is the specificity:

P (Xi > Xj |Yi = 1, Yj = 0, Xi = 1) =
P (Xi > Xj |Yi = 1, Yj = 0, Xi = 1, Xj = 1)P (Xj = 1|Yi = 1, Yj = 0, Xi = 1)

+ P (Xi > Xj |Yi = 1, Yj = 0, Xi = 1, Xj = 0)P (Xj = 0|Yi = 1, Yj = 0, Xi = 1)
= P (Xi > Xj |Yi = 1, Yj = 0, Xi = 1, Xj = 0)P (Xj = 0|Yi = 1, Yj = 0, Xi = 1)
= P (Xj = 0|Yi = 1, Yj = 0, Xi = 1)
= P (Xj = 0|Yj = 0)

= TN

TN + FP

= specificity

as the first probability is zero as Xi = Xj = 1. We combine these two to show that equation (1) reduces to:

P (Xi > Xj |Yi = 1, Yj = 0) = specificity× sensitivity

Thus, using the definition as P (Xi > Xj |Yi = 1, Yj = 0), the AUC of a binary predictor is simply the
sensitivity times the specificity.
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Figure 1: ROC curve of the data in the binary versus extreme categorical variable.

Showing a the additional ties

P (Xi = Xj |Yi = 1, Yj = 0) = P (Xi = Xj |Yi = 1, Yj = 0, Xi = 1, Xj = 1)
+ P (Xi = Xj |Yi = 1, Yj = 0, Xi = 0, Xj = 0)
= P (Xi = 1|Yi = 1)P (Xj = 1|Yj = 0)
+ P (Xi = 0|Yi = 1)P (Xj = 0|Yj = 0)
= (sensitivity× (1− specificity))
+ ((1− sensitivity)× specificity)

A more extreme example of differences with categorical variables

We can make a more extreme (yet contrived) example than the categorical example we presented before. Let
us say we have 20000 samples in the data set and we have a binary predictor with the a distribution against
the outcome as in Table 1.

Table 1: A simple 2x2 table of a binary predictor (rows) versus a binary outcome (columns)
0 1

0 5800 3800
1 4200 6200

Let us assume we have a continuous predictor (e.g. age), but only had 20 unique values observed, so we can
also consider it empirically discrete. Here we see the frequency table in Table 2.

When we create the ROC curves, they have identical curves when accounting for ties (black). The red and
blue lines represents the ROC curves for the pessimistic estimation for the binary (red) and continuous
though discrete (blue) variables. We see they give vastly different results. As the continuous predictor can
actually achieve sensitivity/specificity combinations on the black line, it may make more sense using the
linear interpolation, but he pessimistic approach ROC curve is similar.
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Table 2: A simple 2x2 table of a discrete predictor (rows) versus a binary outcome (columns)
0 1

0.0277 290 190
0.0483 290 190
0.0586 290 190
0.0691 290 190
0.08 290 190
0.0827 290 190
0.0931 290 190
0.0964 290 190
0.1463 290 190
0.1476 290 190
0.1534 290 190
0.1747 290 190
0.2109 290 190
0.2145 290 190
0.2387 290 190
0.2448 290 190
0.2493 290 190
0.2619 290 190
0.2795 290 190
0.2894 290 190
0.2911 210 310
0.3169 210 310
0.3191 210 310
0.3517 210 310
0.3597 210 310
0.3761 210 310
0.3813 210 310
0.4552 210 310
0.5264 210 310
0.6066 210 310
0.6136 210 310
0.6393 210 310
0.6572 210 310
0.6971 210 310
0.7799 210 310
0.7936 210 310
0.8197 210 310
0.8915 210 310
0.9026 210 310
0.9957 210 310
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